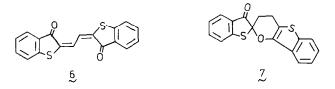
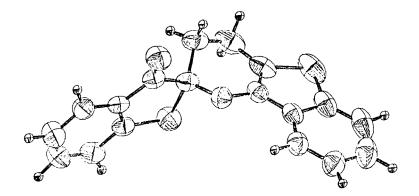

RING CONTRACTION OF 3-BROMOTHIOCHROMAN-4-ONE: FORMATION OF A DIMERIC SPIROTHIOINDOXYL AND VINYLENETHIOINDIGO

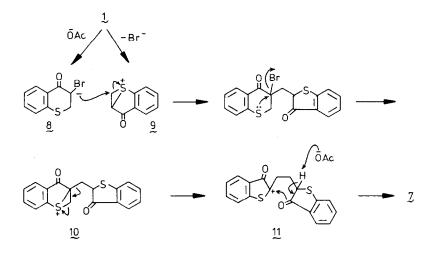
Philip J. Cox School of Pharmacy, Robert Gordon's Institute of Technology, Schoolhill, Aberdeen AB9 1FR, Scotland Neil E. MacKenzie and Ronald H. Thomson^{*} Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland


Abstract: Contrary to the literature, the reaction of 3-bromothiochroman-4-one with sodium acetate in acetic acid gives a dimeric spirothioindoxyl (whose crystal structure has been determined) which, after bromination and then heating in pyridine yields "vinylenethioindigo".

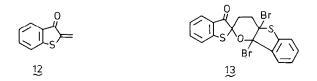
In 1925 Krollpfeiffer et al.¹ reported that heating 3-bromothiochroman-4-one $\frac{1}{2}$ with sodium acetate in boiling ethanol gave thiochromone $\frac{2}{2}$ whereas in boiling acetic acid the product obtained was the diketone $\frac{3}{2}$ (17.5%). The latter formed a dibromide $\frac{4}{2}$ which on heating in pyridine or other high boiling solvent yielded a red vat dye formulated as $\frac{5}{2}$. Clearly the bis-thiochromone $\frac{5}{2}$ is not a red vat dye.


This work has now been repeated (in acetic acid both thiochromone and the dimeric compound are formed) and the red vat dye has been identified as "vinylenethioindigo" 6^2 by direct comparison with an authentic sample prepared by condensation of thioindoxyl with glyoxal.³

Further investigation showed that structures 3 and 4 are also incorrect.



The initial dimeric product showed v_{max} (KBr) 1705 cm⁻¹, but UV⁴ and ¹H NMR⁵ spectra not consistent with structure 3 while the ¹³C NMR⁶ spectrum showed clearly that the compound was unsymmetrical with only one carbonyl group. The problem was solved by X-ray crystallographic analysis which led to the spiro structure 7.


The molecules crystallise in the monoclinic space group P21/c with cell dimensions a = 9.722(4), b = 12.982(16), c = 11.991(6) Å, $\beta = 99.40(4)^{\circ}$ and Z = 4. The X-ray intensities were measured with Mo - Ka radiation on a computer-controlled four-circle diffractometer. The crystal structure was solved by direct phasing methods and the atomic parameters were adjusted by least-squares calculations. Final <u>R</u> is 0.050 for 1695 reflexions. A perspective drawing is shown below. As can be seen one methylene group falls partly within

the shielding cone of the carbonyl group which accounts for the ¹H NMR signals around δ 3. The formation of $\frac{7}{2}$ from $\frac{1}{2}$ can be reasonably explained by an intermolecular reaction and two ring contractions as shown below. In the first the thiiranium cation $\underline{9}$ reacts with $\underline{8}$, the anion of $\underline{1}$, while in the second the thiiranium cation $\underline{10}$ undergoes a 1,2-shift to form the tertiary carbonium ion $\underline{11}$ which cyclises to $\underline{7}$. Since this work was carried out a

compound which appears to be χ^7 has been obtained⁸ by heating 3-diazothiochroman-4-one with silver oxide in boiling methanol. It was suggested⁸ that χ is a Diels-Alder dimer of $\frac{12}{2}$ derived from the initial carbene. When the preparation of χ was repeated under our

conditions but in the presence of a large excess of maleic anhydride or N-phenylmaleiimide the formation of the spiro ketone was not suppressed and no malei-adduct could be detected. A minor product in the reaction of 3-bromothiochroman-4-one with sodium acetate is "vinylene thioindigo" 6 which could arise from 11 by loss of a proton followed by oxidation.

The spiroketone 7 readily forms a yellow insoluble dibromide which darkens on the surface on exposure to light owing to the formation of "vinylenethioindigo". It is converted

quantitatively into "vinylenethioindigo" $\underline{6}$ on heating in high-boiling solvents. The structure of the dibromide appears to be $\underline{13}$ as the F.T. ¹H NMR spectrum (in very dilute carbon tetrachloride) shows, besides ArH signals, two methylene multiplets (8 lines each) centred at δ 1.77 and 2.41. Several routes from $\underline{13}$ to $\underline{6}$ are possible, and the reaction may be self-catalysed by the hydrogen bromide released.

In the original paper¹ several substituted 3-bromothiochroman-4-ones were converted into analogues of 3 and 5. These must now be regarded as derivatives of 7 and 6, respectively.

References and Notes

- ¹ F. Krollpfeiffer, H. Schultze, E. Schumbohm, and E. Sommermeyer, Ber., 1925, 58, 1654.
- ² Assumed to be *trans*.
- ³ P. Freidländer and F. Risse, Ber., 1914, 47, 1919.
- ⁴ λ_{max} (EtOH) 237, 264, 296, 304, 381 nm (log ε 4.52, 4.08, 3.80, 3.82, 3.38, 3.36).
- ⁵ ¹H δ (CDCl₃) 8.0-7.2 (8H, m, ArH), 3.14, 2.70, and 2.22 (total 4H, m in ratio 3:2:2, CH₂CH₂).
- ⁶ ¹³C δ (CDCl₃) 196.66(s), 150.25(s), 143.48(s), 136.88(d), 135.88(s), 131.31(s), 128.30(s), 127.84(d), 125.35(d), 124.75(d), 124.36(d), 123.99(d), 122.36(d), 120.05(d), 112.64(s), 93.75(s), 30.35(t), 20.39(t).
- ⁷ The physical constants agree with those for our compound except for the ¹H NMR spectrum which shows a 4H multiplet between δ 2.0 and 2.3 (CDC ℓ_3).
- ⁸ Y. Tamura, H. Ikeda, C. Mukai, S.H.M. Bayomi, and M. Ikeda, Chem. Pharm. Bull., 1980, 28, 3430.

(Received in UK 16 March 1981)